Olympic Motion

The Olympics are a chance to marvel at the physical abilities of the athletes. But what makes these athletes so unique from the rest of us? Dan Fletcher, an Associate Professor in the Department of Bioengineering at UC Berkeley, explores how the organization of human cells through training, exercise and "muscle memory" produce the fantastic range of Olympic motion.

educator's resources



LESTER HOLT, Anchor: The Olympics are a chance to marvel at the physical abilities of the athletes. But what makes them unique? After all, they're made of the same flesh and blood as the rest of us – how did they become Olympians? UC-Berkeley’s Dan Fletcher, a bioengineering researcher funded by the National Science Foundation, has some answers.

HOLT: The speed of JR Celski.

J.R. CELSKI, U.S. Speed Skating Team - Short Track: We’re at speeds of 35 or 45 miles per hour.

HOLT: The strength of Julie Chu.

JULIE CHU, U.S. Hockey Team: You’re really putting a lot of energy into the swing.

HOLT: The agility of Rachael Flatt.

RACHAEL FLATT, U.S. Figure Skating Team: You only spend about a half second in the air.

HOLT: Even the control of John Shuster.

JOHN SHUSTER, U.S. Curling Team: You’re actually trying to deliver the rock with a specific weight on a specific line.

HOLT: More than just a showcase of one athlete's amazing physical gifts, the Winter Olympics are also a unique chance to witness the dazzling physiology of all human movement.

Dr. DAN FLETCHER, University of California, Berkeley: The remarkable thing for me is the ability to even carry out the activity – to do the ski jump, to skate around corners. It’s that coordination of the muscles, the nerves, that to me is a fascinating thing to watch.

HOLT: Dan Fletcher, associate professor of bioengineering at U.C. Berkeley, has a unique view of human movement. Using special high power microscopes and other cutting edge technology, Fletcher’s lab studies how individual cells move within the human body - such as this video of white blood cells hunting for infection by sniffing out bacteria - and the role cells play not just in human movement, but also in maintaining good health and combating damage and disease.

FLETCHER: You can actually watch cells crawling around. And you might not think about it, but there’s movement in the body constantly. And it’s not just blood flow. There’s movement in tissue as well.

HOLT: The goal of Fletcher's research is to understand not just the mechanics of how cells move, but what role they play in fighting disease and maintaining good health.

FLETCHER: If we can understand the parts, if we can understand how they’re put together, maybe we can actually understand what it means for a cell to move and what it means to help that cell repair tissue.

HOLT: At the molecular level, cell movements depend on the assembly of tiny filaments called actin and the action of molecular motors, called myosins.

FLETCHER: These molecular motors are small individual proteins that consume energy, much like the pistons in an engine. These molecular motors consume a fuel and then they convert that fuel into a motion.

HOLT: In the case of muscle cells, billions of these myosin motors pull on bundles of the actin filaments, generating muscle contraction and body movement. To understand how this works, the motors and fibers can be isolated and studied, as in this movie showing actin filaments pulled along a surface by myosins.

FLETCHER: These all have to be coordinated. You need all of your muscles, all of your molecular motors, to be contracting in unison, in order for the muscle to contract.

HOLT: But how do muscles go from simple contractions to the dynamic motion that allows Emily Cook to do her twists; Kris Freeman to endure a 15-kilometer race; or Lindsey Vonn to attack the the Super-G? The simple answer: practice.

LINDSEY VONN, U.S. Ski Team – Alpine: You’re constantly working, working, working. You work all summer and you’re training all the time on hill and off hill.

HOLT: One way practice helps is by strengthening key muscles - a surprisingly complex process that involves actually breaking down muscle tissue through rigorous exercise, tissue which the body then repairs and makes stronger.

FLETCHER: Damage is a critical part of how we grow. The damage generated in muscles has to be repaired and it’s the body’s ability to repair and improve that muscle that leads to building the muscles.

HOLT: Another way practice helps is by teaching those key muscles to memorize how they should perform during a specific task - a phenomenon called "muscle memory" that involves both the muscle and the brain.

FLETCHER: As you go through exercises, particularly repetitive exercises, even something as simple as typing, we remember where that ‘W’ is, and it seems second nature.

HOLT: While typing is easy for most people, skating, snowboarding or skiing at an Olympic level is not. To perform these tasks at such a high level requires years and years of intense practice.

EMILY COOK, U.S. Ski Team – Freestyle: I’ve been jumping for probably close to 18 years. I’ve been a gymnast for almost 25 years. So you know, after your body’s been trained, you don’t have to think so technically about that stuff.

HOLT: Which is why the Winter Games are a unique chance to celebrate human movement at its finest.

FLETCHER: We all have the same muscle fibers, we all have the same muscle motors, but it’s through training that one develops the organization that's necessary for the exquisite motion that we see Olympians have.

HOLT: Organization that starts at the molecular level and ends with the physical triumph of the Olympics.