Competition Suits

The chemistry and materials science used to create aerodynamic competition suits is described by NSF-funded scientists Melissa Hines of Cornell, Troy Flanagan of the U.S. Ski and Snowboard Association, and U.S. Olympic speed skaters Trevor Marsicano and Chad Hedrick; U.S. luge team members Erin Hamlin and Mark Grimmette; U.S. ski team members Scott Macartney and Anders Johnson; and U.S. bobsledder Steve Holcomb.

educator's resources



LESTER HOLT, anchor: Olympic athletes have long worn special competition clothing to get an edge, and science and technology continue to improve on what they wear. Hear from the athletes and Cornell professor Melissa Hines, a materials researcher funded by the National Science Foundation, how the latest in competition suits will go to work for Team USA in Vancouver.

HOLT: The downhill. The bobsled. Speed skating. Olympic athletes want to go faster…and faster.

Mr. TREVOR MARSICANO (U.S. Speed Skating Team): If I'm on a really good race it just, I feel like a rocket.

Mr. SCOTT MACARTNEY (U.S. Ski Team): A typical downhill you have speeds that reach 90 miles an hour, and probably the fastest I've been clocked out is 97.

HOLT: How do they do it? Plenty of hard work. Physical training. The right equipment, of course. And fast clothes.

Ms. ERIN HAMLIN (U.S. Luge Team): It’s a-a speed suit, we call it and um, it’s made out of a special material that is very aerodynamic.

HOLT: Not just colorful and flashy, these clothes are engineered and designed to enhance performance, and counteract the enemy of speed: drag - the atmospheric resistance that slows athletes as they move toward the finish line. And it all starts in the lab with synthetic polymer materials and molecules called monomers. Professor Melissa Hines is director of the Cornell University Center for Materials Research...

Dr. MELISSA HINES (Cornell University): All polymers start with simple molecules which I'm representing here as a paper clip, and you string them together into long chains. And so you’ll make a long chain of something like this out of all of these monomers. And so a long chain of monomers is a polymer, and now you can see that this long chain is strong.

HOLT: Chemical engineers decide which monomers to use and how to connect them together to create polymeric materials as different as spandex – lightweight and flexible for a skin suit…and aramids, like Kevlar – strong yet lightweight, for rigid skis and protective helmets.

Dr. HINES: If you just take a regular polymer made of long chains, you might get something that looks like this spaghetti here. However, since I have put it into a crystal and made it into this nice log, now it’s going to be very strong in this direction. So polymers are really a lot like the spaghetti that you eat everyday, and you can tweak their properties in much the same way that you can tweak the properties of spaghetti.

HOLT: Even wind resistance can be engineered into the clothing design. A rougher surface on a competition suit may actually have less drag than a smooth surface, helping an athlete go faster in much the same way a golf ball is designed to go farther.

Dr. HINES: What you’d see if you look at the air above each one of these dimples is that it forms a little whirlpool or a little vortex, and these little whirlpools act like ball bearings. So the air flows over the golf ball smoothly, and the golf ball flies farther than it otherwise would.

HOLT: In the sliding sports and speed skating, a tight, sleek fit is important for the right airflow. Exposed skin and hair can slow the athletes down, so they wear hoods and gloves to help fight drag.

Mr. MARK GRIMMETTE (U.S. Luge Team): We're trying to be as aerodynamic as possible and we're trying to make it so that the air grabs on our clothing as little as possible so that we can just easily move through that air.

HOLT: But what if you want to catch some air for additional performance?

Mr. TROY FLANAGAN (U.S. Ski and Snowboard Association): A ski jump suit often acts like a kite in the wind. So the bigger the kite, the more wind it catches. And the further you fly. And so you want the suit to capture as much air as possible, so in scientific terms that means generating the highest amount of lift with the lowest amount of drag.

Mr. ANDERS JOHNSON (U.S. Ski Team): It’s pretty amazing what it-what it can do for you, when you’re ski jumping.

HOLT: Flying off a ski jump, slaloming down a mountain, or crouching low while circling a track – even the body positions of the athletes are taken into account when creating the optimal competition suits.

Mr. CHAD HEDRICK (U.S. Speed Skating Team): So when you see us speed skating its always in a very, very low position. And that’s how we train our bodies to go as fast as we can.

Mr. STEVE HOLCOMB (U.S. Bobsled Team): As for us you know only our shoulders are exposed so um, that's where we want to be most aerodynamic.

Dr. HINES: These special materials that resist air drag, they have a directionality associated with them, so they’re designed to have the material oriented for airflow in that direction.

HOLT: Combining the various materials together into one suit poses another challenge for designers. The smallest adjustment, placement, or thickness of a seam can change airflow and affect drag.

Dr. HINES: So in many cases, what they will do is actually bond the material. They will fuse the material to get rid of these seams so the air flows over it very smoothly.

HOLT: Then it’s out of the lab and onto the course for the final test, where the athletes are dressed for success in their competition best.